Rabu, 28 Maret 2018

Persamaan Linier Tiga Variabel

Sistem persamaan linear 3 variabel, merupakan himpunan 3 buah persamaan dengan variabel sebanyak 3. Bentuk ini satu tingkat lebih rumit dibandingkan sistem persamaan linear 2 variabel
Metoda meyelesaikan persamaan
1. Metoda Eliminasi
2. Metoda subtitusi
3. Metoda determinan
4. Metoda matriks
5. Metoda operasi baris elementer

Metoda Eliminasi

Supaya lebih mudah langsung saja kita masuk ke contoh-contoh

Contoh soal 1 :

2x + 3y – z = 20
3x + 2y + z = 20
x + 4y + 2z = 15
Jawab :
Ketiga persamaan bisa kita beri nama persamaan (1), (2), dan (3)
2x + 3y – z = 20 ………………………..(1)
3x + 2y + z = 20 ………………………..(2)
x + 4y + 2z = 15 ………………………..(3)
Sistem persamaan ini harus kita sederhanakan menjadi sistem persamaan linear 2 variabel. Untuk itu kita eliminasi variabel z
Sekarang persamaan (1) dan (2) kita jumlahkan
2x + 3y – z = 20
3x + 2y + z = 20_____   +
5x + 5y = 40
x + y = 8 ………………….(4)
Selanjutnya persamaan (2) dikali (2) dan persamaan (3) dikali (1) sehingga diperoleh
6x + 4y + 2z = 40
x + 4y + 2z = 15____  _
5x = 25
x = 5
Nilai x ini kita subtitusi ke persamaan (4) sehingga
x + y = 8
5 + y = 8
y = 3
selanjutnya nilai x dan y yang ada kita subtitusikan ke persamaan (2)
3x + 2y + z = 20
3.5 + 2.3 + z = 20
15 + 6 + z = 20
z = -1
Jadi, himpunan penyelesaiannya adalah {(5, 3, -1)}

Contoh soal 2 :

Tentukan himpunan penyelesaian dari
3x + 4y – 3z = 3
2x – y + 4z = 21
5x + 2y + 6z = 46
Jawab :
Agar lebih mudah, ketiga persamaan kita beri nama (1), (2), dan (3)
3x + 4y – 3z = 3  …………………………….(1)
2x – y + 4z = 21  …………………………….(2)
5x + 2y + 6z = 46 …………………………….(3)
Selanjutnya persamaan (1) dikali 1 dan persamaan (2) dikali 4, sehingga diperoleh
3x + 4y – 3z = 3    |1| → 3x + 4y – 3z = 3
2x – y + 4z = 21    |4| → 8x – 4y+16z = 84    +
.                                  11x + 13z = 87 ……………..(4)
Berikutnya persamaan (3) dikali 1 dan persamaan (2) dikali 2, sehingga diperoleh
5x + 2y + 6z = 46    |1| → 5x + 2y + 6z = 46
2x – y + 4z = 21      |2| → 4x – 2y + 8z = 42     +
.                                    9x + 14z = 88 …………..(5)
Sekarang persamaan (5) dikali 11 dan persamaan (4) dikali 9 sehingga diperoleh
9x + 14z = 88   |11|   99x +154z = 968
11x + 13z = 87  |9|    99x + 117z=783       _
.                                      37z = 185
.                                          z = 5
Nilai z=5 kita subtitusi ke persamaan (4)
11x + 13z = 87
11x + 13.5 = 87
11x + 65 = 87
11x = 22
x = 2
Nilai x=2 dan z=5 kita subtitusikan ke persamaan (3) sehingga
5x +2y +6z = 46
5.2 +2y +6.5 = 46
10 + 2y + 30 = 46
2y = 6
y = 3
Jadi, himpunan penyelesaiannya adalah {(2, 3, 5)}

Metoda subtitusi

Contoh soal 3

Himpunnan penyelesaian sistem persamaan
2x + 5y + 4z = 28
3x – 2y + 5z = 19
6x + 3y – 2z = 4
adalah …
Jawab :
Sekarang setiap persamaan kita beri nama (1), (2), dan (3)
2x + 5y + 4z = 28 ……………………………………..(1)
3x – 2y + 5z = 19……………………………………….(2)
6x + 3y – 2z = 4…………………………………………(3)
Persamaan (1) bisa kita ubah sebagai berikut
2x + 5y + 4z = 28
4z = 28 – 2x – 5y
 ………………………………………..(4)
Selanjutnya persamaan (4) kita subtitusikan ke persamaan (2) sehingga
3x – 2y + 5z = 19
Jika kedua ruas dikali dengan 4 maka diperoleh
12x – 8y + 140 – 10x – 25y = 76
2x -33y = -64 ……………………………………….(5)
Sekarang persamaan (4) kita subtitusikan ke persamaan (3) sehingga
6x + 3y – 2z = 4
Jika kedua ruas dikali 4 maka
24x + 12y – 56 + 4x + 10y = 16
28x + 22y = 72
14x + 11y = 36
11y = 36 – 14x
…………………………………………(6)
Sekarang persamaan (6) kita subtitusikan ke persamaan (5) sehingga
2x -33y = -64
2x – 108 + 42x = -64
44x = 44
x=1
Jadi, himpunan penyelesaiaannya adalah {(1, 2, 4)}

Persamaan Linier Dua Variabel

PERSAMAAN LINEAR DUA VARIABEL

14MAR
A. Pengertian Persamaan Linear Dua variabel
Persamaan linear dua variabel adalah persamaan linear yang memiliki dua variabel, dengan pangkat masing-masing variabel adalah satu. Persamaan Linear Dua Variabel memiliki bentuk umum :
ax + by = c
Dengan a, b, dan c adalah konstanta, x dan y adalah variabel
contoh :
a. x – y =0
b. 2m + n =4
Misalkan akan dicari penyelesaian dari 2m+n=4.
  • Bila m = 0, maka 0 + n = 4 Penyelesaiannya adalah (0,4)
  • Bila m = 1, maka 2.1 + n = 4, sehingga n=2, Penyelesaiannya adalah (1,4).
  • Bila m = 2, maka 2.2 + n =4, sehingga n=0, Penyelesaiannya adalah (2,0).
Demikian untuk seterusnya.
B. Sistem Persamaan Linear Dua Variabel
Sistem Persamaan Linear Dua Variabel  adalah dua buah persamaan linear dua variabel yang mempunyai satu penyelesaian.
Bentuk umumnya seperti berikut :
a1x + b1y = c1
a2x  + b2y = c2
Dengana1, b1,  a2, badalah koefisienserta x dan y adalah variabel.
Contoh :
x – y =4 … (i)
x + y =6 … (ii)
Persamaan (i) dan (ii) disebut sistem persamaan linear dua variabel karena kedua persamaan tersebut memiliki satu penyelesaian yaitu (5,1)
C. Penyelesaian Sistem persamaan Linear Dua Variabel
Sistem persamaan linear dua variabel dapat diselesaikan dengan :
a.       Metode substitusi
Bila menggunakan metode subtitusi kita dapat menggantikan suatu variabel dengan variabel dari persamaan lain.
Contoh :
2x – y = 6 ……..(i)
x + y = 3 ……..(ii)
Langkah awalUbahlah salah satu persamaan dalam bentuk X = …. Atau y = ….
Dari persamaan (i), kita dapat memperoleh : 2x – 6 = y
Langkah  keduaSubtitusikan persamaan diatas ke perssamaan (ii) sehingga diperoleh :
x + (2x – 6) = 3
3x – 6 = 3
3x = 9
x = 3
Langkah Ketiga
Nilai x = 3 disubtansikan ke persamaan (i) atau ke persamaan (ii).
Misalkan x = 3 disubtansikan ke persamaan (i), diperoleh :
2.3 – y =6
6 – y = 6
y = 6-6
y = 0
b.      Metode eliminasi
Metode eliminasi dilakukan dengan cara menghilangkan salah satu variabel. Contoh diatas dapat diselesaikan menggunakan metode eliminasi berikut.
Contoh :
2x – y = 6 …. (i)
x + y = 3 …. (ii)
Langkah awal
mulailah dengan menghilangkan variabel x
2x – y = 6 | x 1 |2x – y = 6
x + y = 3 |x 2 | 2x + 2y = 6
-3 y = 0
y = 0
Langkah Kedua
hilangkan variabel y
2 x – y  = 6
    x + y = 3        3x = 9
x = 3
jadi, penyelesaiannya adalah x = 3 dan y = 0, ditulis HP = {(3,0)}
c.       Metode Grafik
Dengan metode grafik, kita harus menggambar grafik dari kedua persamaan, kemudian titik potong kedua grafik tersebut merupakan penyelesaian dari sistem persamaan linear dua variabel.
Contoh :
2x – y = 6
x + y = 3
Langkah awal
gambarlah grafik persamaan 2x – y = 6.
kita harus menentukan terlebih dahulu titik potong grafik terhadap sumbu X dan sumbu Y.
1) titik potong terhadap sumbu X, maka y= 0
2x – y = 6
2x – 0 = 6
2x = 6
x = 3
2) titik potong terhadap sumbu Y, maka  x = 0.
x + y = 3
0 + y = 3
y = 3
titik potong terhadap Y adalah (0,3).
d.      Metode campuran dari metode eliminasi dan substitusi
Cara menyelesaikan sistem persamaan linear dua variabel dapat dilakukan dengan metode campuran dari eliminasi dan subtitusi.
Contoh :
2x – y = 3 ….. (i)
x + y = 3 ….. (ii)
Langkah awal : metode eliminasi
hilangkan variabel x
2x – y = 6 |x 1 |2x – y  = 6
x + y = 3 |x 2 | 2x + 2y = 6
-3y = 0
y = 0
Langkah kedua : metode subtitusi
masukkan nilai y = 0 ke persamaan (i) atau ke persamaan ke (ii), misalkan nilai y = 0 dimasukkan ke persamaan (i).
2x – 0 = 6
2x = 6
x  = 3
jadi, penyelesaian sistem persamaan linear dua variabel diatas adlah x = 3 dan y = 0, dituliskan HP = {(3,0)}
D. Penggunaan Sistem Persamaan Linear Dua Variabel
Penggunaan sistem persamaan linear satu variabel juga dapat diterapkan dalam kehidupan sehari-hari.
Contoh :
harga 4 buah buku tulis dan 3 buah pensil adalah Rp. 25. 000,00. harga 2 buah buku tulis dan 7 buah pensil adalah Rp. 29.000,00. berapakah harga 2 lusin buku tulis dan 4 lusin pensil ?
jawab:
Misalkan, harga sebuah buku tulis dilambangkan x dan harga sebuah pensil dilambangkan y.
Dengan demikan diperoleh :
4x + 3y = Rp25.000,00 …. (i)
2x + 7y = Rp 29.000,00 …. (ii)
Misalkan sistem persamaan linear dua variabel diatas akan diselesaikan dengan metode eliminasi.
Langkah awal
Hilangkan variabel x
4x + 3y = 25.000|x 1|4x + 3y  = 25.000
2x + 7 y = 29.000|x 2|4x+14y = 58.000                                    -11 y = – 33.000
y  = 3. 000
Langkah kedua
kita dapat  menggunakan metode substitusi.
Masukkan nilai y = 3. 000 ke salah satu persamaan. Misalkan (i), diperoleh :
4x + 3.3000 = 25.000
4x = 25.000 – 9.000
x = 4.000
Dengan demikian, diperoleh bahwa harga sebuah buku tulis adalah Rp4.000,00 dan harga sebuah pensil adalah Rp3.000,00. harga 2 lusin buku tulis dan 4 lusin pensil adalah :
= 2. 12.Rp4.000,00 + 4.12.Rp3.000,00
= 24. Rp4.000,00 + 48.Rp3.000,00
= Rp96.000,00 + Rp144.000,00
=Rp240.000,00
Jadi harga 2 lusin buku tulis dan 4 lusin pensil adalah Rp240.000,00

Selasa, 14 Maret 2017

PERMUTASI

Permutasi

Permutasi adalah susunan yang dapat dibentuk dari suatu kumpulan objek yang diambil sebagian atau seluruhnya. Perbedaan antara permutasi dan kombinasi adalah perhatian pada pengurutannya, dimana pada permutasi memperhatikan urutan, sedangkan pada kombinasi tidak memperhatikan urutan. XY dan YX pada permutasi di hitung 2, sedangkan pada kombinasi hanya dihitung 1.

Notasi dari permutasi adalah P. Bila n permutasi k, notasinya adalah nPk. Dimana
nPk=n!(nk)!
Notasi ! adalah faktorial.

Contoh Soal No. 1

Lima orang pemain catur akan memperebutkan juara satu, dua dan tiga pada sebuah turnamen catur. Berapakah banyaknya susunan juara satu, dua dan tiga yang dapat dibentuk dari kelima pemain tersebut?

Jawab:

Dari soal di atas, kita akan membuat susunan urutan 3 juara dari 5 pemain catur, sehingga k=3 dan n=5. Dengan menggunakan rumus permutasi, banyaknya susunan juara yang dapat dibentuk adalah
nPk=5P3=5!(53)!=5!2!=60

Contoh Soal No. 2

Sebuah organisasi mahasiswa memiliki 7 orang yang kompeten untuk mengisi posisi ketua, wakil ketua, sekretaris dan bendahara. Berapakah banyaknya cara untuk memilih susunan posisi tersebut?

Jawab:

Tujuh orang yang kompeten akan menenpati 4 posisi, sehingga banyaknya susunan yang akan dibentuk adalah 7 kombinasi 4, yaitu
7P4=7!(74)!=7!3!=35

Permutasi Siklis

Peluang: Permutasi Siklis

Permutasi siklis adalah permutasi yang disusun melingkar. Misalnya A, B, dan C disusun melingkar.
Permutasi Siklis ABC
Jika kita pandang urutan itu searah jarum jam maka susunan ABC, CAB, dan BCA adalah sama. Sehingga banyaknya permutasi siklis dari 3 objek adalah 3!/3 = (3 × 2!)/3 = 2! = 2. Jadi, akan dihasilkan 2 susunan yang berbeda secara siklis dari huruf-huruf A, B, dan C, yaitu ABC dan ACB.
Andaikan sekarang kita mempunyai 4 objek yang akan disusun secara siklis.
Permutasi Siklis ABCD
Keempat gambar di atas menunjukkan permutasi yang sama. Sehingga banyaknya permutasi siklis dari 4 objek adalah 4!/4 = (4 × 3!)/4 = 3! = 6. Jadi, akan dihasilkan 6 susunan yang berbeda secara siklis dari huruf-huruf A, B, C, dan D. Apa yang dapat disimpulkan dari kedua contoh di atas?
Banyaknya permutasi siklis dari n objek dapat dinyatakan dengan (n – 1)!
Untuk lebih memahami mengenai permutasi siklis, khususnya dalam pemecahan masalah, perhatikan contoh soal berikut ini.
Contoh Soal
Dalam sebuah keluarga yang terdiri dari seorang ayah, seorang ibu, dan 3 orang anaknya makan bersama dan mengelilingi sebuah meja makan. Berapa banyaknya cara yang berlainan saat mereka dapat duduk, jika:
  1. mereka berpindah-pindah tempat;
  2. ayah dan ibu selalu berdekatan?
Pembahasan Contoh Soal
  1. Banyaknya anggota keluarga adalah 5 orang (seorang ayah, seorang ibu, dan 3 orang anak). Sehingga, banyaknya cara yang berlainan saat mereka duduk berpindah-pindah tempat adalah (5 – 1)! = 4! = 24 cara.
  2. Perhatikan gambar berikut.
    Contoh Soal Permutasi Siklis
    Ayah dan ibu selalu berdampingan, sehingga pasangan ini dapat kita anggap satu. Sehingga terdapat 4 objek yang akan disusun secara siklis. Akan tetapi pasangan ayah dan ibu dapat disusun kembali menjadi 2P2 cara. Sehingga banyaknya susunan agar ayah dan ibu selalu berdekatan adalah (4 – 1)! × 2P2 = 3! × 2! = 12 cara.
semoga bermanfaat !!!

Sabtu, 04 Februari 2017

PERSAMAAN NILAI MUTLAK


Persamaan Nilai Mutlak - Nilai mutlak dari sebuah bilangan dapat didefinisikan sebagai jarak bilangan tersebut terhadap titik 0 pada garis bilangan tanpa memperhatikan arahnya. Dari pengertian tersebut dapat kita ambil contoh |x| = 4 memiliki dua buah penyelesaian dikarenakan ada dua buah bilangan yang jaraknya 4 titik dari 0 yaitu x = 4 dan x = -4seperti bisa kalian lihat pada gambar di bawah ini:

Persamaan Nilai Mutlak dan Cara Penyelesaiannya

Konsep tersebut dapat kita perluas penggunaannya untuk menyelesaikan persoalan-persoalan yang berkaitan dengan bentuk aljabar yang terletak pada simbol-simbol nilai mutlak. Hal tersebut dijelaskan oleh sifat persamaan nilai mutlak berikut ini:

“Apabila x adalah sebuah bentuk aljabar, sedangkan merupakan bilangan real positif, maka |x| = n dapat diimplikasikan menjadi x = n atau x = -n

Perlu diingat bahwa sifat ini hanya bisa diaplikasikan setelah kita melakukan isolasi terhadap simbol nilai mutlak yang ada pada satu ruas. Untuk lebih mudah dalam memahaminya, simak penjelasan  mengenai cara menyelesaikan persamaan nilai mutlak di bawah ini:


Cara Menyelesaikan Persamaan Nilai Mutlak

Contoh Soal 1

Selesaikanlah persamaan -3|x-4|+5 = 14

Cara Menyelesaikannya:

Pertama-tama kita harus mengisolasi nilai mutlak caranya adalah dengan memisahkan nilai mutlak agar berada pada satu ruas, sementara suku yang lain kita pindahkan menuju ruas yang lain.

-3|x-4|+5 = 14
-3|x-4|= 14 - 5
-3|x-4|= 9
  |x-4|= -3

Pada persamaan nilai mutlak x-4 adalah "X" sehingga kita bisa menyimpulkan bahwa:

x-4 = 3 atau x-4 = -3

sehingga

x = 7 atau x = 1

maka himpunan penyelesaian dari persamaan di atas adalah {7,1}



Contoh Soal 2


Tentukanlah himpunan penyelesaian dari persamaan |4 - 2/5 x|-7 = 13

Cara Menyelesaikannya:


|4 - 2/5 x|-7 = 13
|4 - 2/5 x|= 13 + 7
|4 - 2/5 x|= 20

maka

|4 - 2/5 x|= 20 atau |4 - 2/5 x|= -20

sehingga

- 2/5 x = 16 atau -2/5 x = -24

x = -40 atau x = 60

Maka himpunan penyelesaiannya adalah {-40,60}